a2 United States Patent

McNutt et al.

US009152567B2

US 9,152,567 B2
Oct. 6, 2015

(10) Patent No.:
(45) Date of Patent:

(54) CACHE PREFETCHING BASED ON (56) References Cited
NON-SEQUENTIAL LAGGING CACHE
AFFINITY U.S. PATENT DOCUMENTS
5,561,782 A 10/1996 O’C
(71) Applicant: International Business Machines 5649,153 A * /1997 Md\(;élél(;rt ale 711/118
Corporation, Armonk, NY (US) 5,778,435 A 7/1998 Berenbaum et al.
5,900,009 A * 5/1999 Vishlitzky et al. 711/113
(72) Inventors: Bruce McNutt, Tucson, AZ (US); 5,970,508 A~ 10/1999 Howe et al.
Vernon W. Miller, Tucson, AZ (US) 6,092,149 A 7/2000 Hicken et al.
: ’ ? 6,141,731 A 10/2000 Beardsley et al.
. . . . 6,327,644 Bl 12/2001 Beardsley et al.
(73) Assignee: International Business Machines 6,721,847 B2 4/2004 Hursey
Corporation, Armonk, NY (US) 6,957,304 B2 10/2005 Wilkerson
6,993,629 B2 1/2006 Beardsley et al.
(*) Notice: Subject to any disclaimer, the term of this ;’ggg’gg; E% igggg Ehauvel’l ettall'
. f 353, omarla et al.
patent is extended or adjusted under 35 71406569 B2 7/2008 van de Waerdt et al.
U.S.C. 154(b) by 0 days. 7,461,211 B2 12/2008 Hakura et al.
7,546,601 B2 6/2009 Byrd et al.
(21) Appl. No.: 14/667,130 (Continued)
(22) Filed: Mar 24,2015 OTHER PUBLICATIONS
(65) Prior Publication Data U-S. Appl. No. 13/765,343'(C inued)
ontinue
US 2015/0193349 Al Jul. 9, 2015
Primary Examiner — Stephen Elmore
L (74) Attorney, Agent, or Firm — Stephen R. Tkacs; Stephen
Related U.S. Application Data J. Walder, Jr.; Randall J. Bluestone
(63) lgeol?tllnzuazti)olrg of application No. 13/765,343, filed on (57) ABSTRACT
T ’ A mechanism is provided in a cache subsystem for cache
(51) Int.CL prefetching based on non-sequential access..The mechanism
GOG6F 12/08 (2006.01) fietermlnes frequently accessed non- seqpentlal cache rec.o.rds
in the cache subsystem. The mechanism collects trailing
(52) US.CL e .
CPC ... GOGF 12/0862 (2013.01); GOGF 2212/6024 record statistics for the fre?quently ac.cessed nor.l-sequentlal
(2013.01) cache records. The mechanism determines a caching strategy.
(58) Field of Classification Search The caching strategy comprises prefetching a set of trailing

records responsive to a read of a given frequently accessed

CPC GOGF 12/0862; GOGF 2212/602; GOGF . g .
212/6026 non-sequential cache record. The mechanism applies the
USPC oo 711/137, 156, 159, 221 Caching strategy to the cache subsystem.

See application file for complete search history.

20 Claims, 4 Drawing Sheets

WA wEeI
o
i

DETERMINE FREQUENTLY
ACCESSED NON-SEQUENTIAL
CACHE RECORDS

e

v

COLLECT TRAILING RECORD
STATISTICS

v

ANALYZE TRAILING RECORD
STATISTICS

v

CREATE AND ENABLE NEW
CACHING STRATEGIES

e

v

EVALUATE EFFECTIVENERS OF
NEW STRATEGIES {OPTIONAL)

308 END

US 9,152,567 B2
Page 2

(56)

7,630,955
7,661,135
7,676,630
7,725,658
7,774,578
9,021,210
2004/0034746
2005/0138296
2011/0238923
2012/0084497

References Cited

U.S. PATENT DOCUMENTS

B2
B2
B2
B2
B2
B2 *
Al
Al
Al
Al

12/2009
2/2010
3/2010
5/2010
8/2010
4/2015
2/2004
6/2005
9/2011
4/2012

Byrd et al.

Byrd et al.

Qiao

Lang et al.

Keltcher

McNutt et al.c..c....... 711/137
Horn et al.

Coulson et al.

Hooker et al.

Subramaniam et al.

2012/0151150 Al 6/2012 Rabinovitch et al.
OTHER PUBLICATIONS

Hur, Ibrahim et al., “Feedback Mechanisms for Improving Probabi-
listic Memory Prefetching”, IEEE 15th International Symposium on
High Performance Computer Architecture, Feb. 14-18, 2009,
Raleigh, North Carolina, 12 pages.

Subha, S. , “An Algorithm for Buffer Cache Management”, IEEE
2009 Sixth International Conference on Information Technology:
New Generations, Apr. 27-29, 2009, Las Vegas, Nevada, 5 pages.

* cited by examiner

U.S. Patent Oct. 6, 2015 Sheet 1 of 4 US 9,152,567 B2

5 =~rnnnnA
CLIEENT

=B

CLENT

NETWORK

CLIENT

205 | PROCESSING 200) o
0 PROCESS ; FIG. 2
210 o0z T 208
— — JL —
21 236 224
GRAPHICS |4 NaveH —— WA r.JG =0]
PROCESSOR b = N—/| MEMORY AUBIO
— ADAPTER SIo ROM
204 AT
246 L’ﬁ 4 238 - e = =
— —
BUS SB/CH BUS
228 230 242 234 220 222
’(‘) - VChJ 241.’.. l_—7‘ ~ td)‘ ~ (_—7 = -~ l_—" ~
: co- 4L 57 [ussann .| | KEYBOARD
DISK 1| rom ‘ otser | | PEPCe 1 anp mousE | | mopem
NETWORK sorts | | DEVICES | | “inapter
ADAPTER ALATTER

U.S. Patent Oct. 6, 2015 Sheet 2 of 4
FIG. 3
300 BEGIN
301
(W |
DETERMINE FREQUENTLY
ACCESSED NON-SEGUENTIAL
CACHE RECORDS
o !
COLLECT TRAILING RECORD
STATISTICS
as
%, v
ANALYZE TRAILING RECORD
STATISTICS
204
“{\}_4/\ ¢
CREATE AND ENABLE NEW
CACHING STRATEGIES
2
05, v
EVALUATE EFFECTIVENESS OF
NEW STRATEGIES (OPTIONAL)

306 END

US 9,152,567 B2

.
FIG. 5

ACCESS # (IMPLICIT) | TRAILING RECORD SEQUENCE STOR TRACKING RECORD

1 Eq Ea . By NULL

Z B, B, L B B

3 NULL E;

U.S. Patent Oct. 6, 2015 Sheet 3 of 4 US 9,152,567 B2

400 BEGIN FIG. 4
401
)
TIME=0
407
(V)
» WAIT FOR NEXT READ |«

NO
CACHE HIT?

YE
IN SRBL? >

406
™~
UPDATE SRBL
4037
w1
UPDATE AT
408 409
~
NO YES
SORT AT BY COUNTS
410
A ~v
POPULATE FARL WITH
TOPNINAT

\ 4

411 END

U.S. Patent Oct. 6, 2015 Sheet 4 of 4

FIG. 6

TRACKING?

US 9,152,567 B2

SWITCH TRACKING

605
S

START TRACKING

ROWFULL?

NG

611
v A

STOP TRACKING

FiG. 7
RECORD FROM FARL |RECORDS TO PREFETCH
Ry PR, PRe
Re NULL
Ry PR:, PR, ...

US 9,152,567 B2

1
CACHE PREFETCHING BASED ON
NON-SEQUENTIAL LAGGING CACHE
AFFINITY

BACKGROUND

The present application relates generally to an improved
data processing apparatus and method and more specifically
to mechanisms for cache prefetching based on non-sequential
lagging cache affinity.

A cache is a component that transparently stores data so
that future requests for that data can be served faster. The data
that is stored within a cache might be values that have been
computed earlier or duplicates of original values that are
stored elsewhere. If requested data is contained in the cache
(i.e., cache hit), this request can be served by simply reading
the cache, which is comparatively faster. Otherwise (i.e.,
cache miss), the data must be recomputed or fetched from its
original storage location, which is comparatively slower.
Hence, the greater the number of requests that can be served
from the cache, the faster the overall system performance
becomes.

Small memories on or close to the CPU can operate faster
than the much larger main memory. Web browsers and web
proxy servers employ web caches to store previous responses
from web servers, such as web pages and images. Web caches
reduce the amount of information that needs to be transmitted
across the network, as information previously stored in the
cache can often be reused. This reduces bandwidth and pro-
cessing requirements of the web server, and helps to improve
responsiveness for users of the web. Database caching can
substantially improve the throughput of database applica-
tions, for example in the processing of indexes, data dictio-
naries, and frequently used subsets of data.

Prefetching is the operation of loading data or instructions
in anticipation of their need. There are known solutions for
access patterns that are easily detectable, such as sequential
prefetching. However, these solutions for access patterns are
not able to take advantage of access patterns that appear
random but are in fact frequently repeated sequences of
events.

SUMMARY

In one illustrative embodiment, a method, in a data pro-
cessing system, is provided for cache prefetching based on
non-sequential access. The method comprises determining
frequently accessed non-sequential cache records in a cache
subsystem. The method further comprises collecting trailing
record statistics for the frequently accessed non-sequential
cache records. The method further comprises determining a
caching strategy. The caching strategy comprises prefetching
a set of trailing records responsive to a read of a given fre-
quently accessed non-sequential cache record. The method
further comprises applying the caching strategy to the cache
subsystem.

In other illustrative embodiments, a computer program
product comprising a computer useable or readable medium
having a computer readable program is provided. The com-
puter readable program, when executed on a computing
device, causes the computing device to perform various ones
of, and combinations of, the operations outlined above with
regard to the method illustrative embodiment.

In yet another illustrative embodiment, a system/apparatus
is provided. The system/apparatus may comprise one or more
processors and a memory coupled to the one or more proces-
sors. The memory may comprise instructions which, when

10

15

20

25

30

35

40

45

50

55

60

65

2

executed by the one or more processors, cause the one or more
processors to perform various ones of, and combinations of,
the operations outlined above with regard to the method illus-
trative embodiment.

These and other features and advantages of the present
invention will be described in, or will become apparent to
those of ordinary skill in the art in view of, the following
detailed description of the example embodiments of the
present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The invention, as well as a preferred mode of use and
further objectives and advantages thereof, will best be under-
stood by reference to the following detailed description of
illustrative embodiments when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 depicts a pictorial representation of an example
distributed data processing system in which aspects of the
illustrative embodiments may be implemented;

FIG. 2 is a block diagram of an example data processing
system in which aspects of the illustrative embodiments may
be implemented;

FIG. 3 illustrates phases of cache prefetching based on
non-sequential lagging cache affinity in accordance with an
illustrative embodiment:

FIG. 4 is a flowchart illustrating operation of creating a list
of frequently accessed records in accordance with an illustra-
tive embodiment;

FIG. 5 depicts an example of the format of a sub-table in
accordance with an illustrative embodiment;

FIG. 6 is a flowchart illustrating operation of collecting
trailing record statistics in accordance with an illustrative
embodiment; and

FIG. 7 depicts an example of the format of a prefetch table
in accordance with an illustrative embodiment.

DETAILED DESCRIPTION

The illustrative embodiments provide a mechanism for
detecting repeated sequences of events that can be used to
improve overall cache efficiency through prefetching or tier-
ing. The mechanism improves cache efficiency by finding
commonly trailing cache records associated with another
record that are not sequential in nature and applying new
caching strategies based on the information that will increase
the overall number of cache hits associated with these
records. The mechanism describes a method for first finding
the most frequently accessed records. The mechanism then
analyzes the data describing the records and their trailing
records to 1) reject sequential access patterns via a blacklist,
2) find trailing records that are themselves part of the most
frequently accessed records, and 3) determine potential can-
didates from the trailing records that could be used for new
caching strategies. The results of the analysis are used to
refine the list of frequently accessed records using the black-
list and to define a caching strategy based on list of frequently
accessed records and the new caching strategies.

The term “caching strategy” refers to general strategy but
could include prefetching of records or a change in the tiering
of those records. After a caching strategy is applied, the
effectiveness of the new strategy is optionally evaluated for
some period of time. For example, the mechanism may com-
pare cache hit ratios before and after the strategy is in place.
After some time or if triggered by some event in the efficiency
evaluation phase, the mechanism may start the whole cycle

US 9,152,567 B2

3

anew. Over long periods of time, the algorithm will likely
become more efficient due to updating the blacklist, which
can occasionally be cleared.

The illustrative embodiments may be utilized in many dif-
ferent types of data processing environments. In order to
provide a context for the description of the specific elements
and functionality of the illustrative embodiments, FIGS. 1
and 2 are provided hereafter as example environments in
which aspects of the illustrative embodiments may be imple-
mented. It should be appreciated that FIGS. 1 and 2 are only
examples and are not intended to assert or imply any limita-
tion with regard to the environments in which aspects or
embodiments of the present invention may be implemented.
Many modifications to the depicted environments may be
made without departing from the spirit and scope of the
present invention.

FIG. 1 depicts a pictorial representation of an example
distributed data processing system in which aspects of the
illustrative embodiments may be implemented. Distributed
data processing system 100 may include a network of com-
puters in which aspects of the illustrative embodiments may
be implemented. The distributed data processing system 100
contains at least one network 102, which is the medium used
to provide communication links between various devices and
computers connected together within distributed data pro-
cessing system 100. The network 102 may include connec-
tions, such as wire, wireless communication links, or fiber
optic cables.

In the depicted example, server 104 and server 106 are
connected to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for
example, personal computers, network computers, or the like.
In the depicted example, server 104 provides data, such as
boot files, operating system images, and applications to the
clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 in the depicted example. Distributed data
processing system 100 may include additional servers, cli-
ents, and other devices not shown.

In the depicted example, distributed data processing sys-
tem 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data com-
munication lines between major nodes or host computers,
consisting of thousands of commercial, governmental, edu-
cational and other computer systems that route data and mes-
sages. Of course, the distributed data processing system 100
may also be implemented to include a number of different
types of networks, such as for example, an intranet, a local
area network (LAN), a wide area network (WAN), or the like.
As stated above, FIG. 1 is intended as an example, not as an
architectural limitation for different embodiments of the
present invention, and therefore, the particular elements
shown in FIG. 1 should not be considered limiting with regard
to the environments in which the illustrative embodiments of
the present invention may be implemented.

FIG. 2 is a block diagram of an example data processing
system in which aspects of the illustrative embodiments may
be implemented. Data processing system 200 is an example
of'a computer, such as client 110 in FIG. 1, in which computer
usable code or instructions implementing the processes for
illustrative embodiments of the present invention may be
located.

In the depicted example, data processing system 200
employs a hub architecture including north bridge and

10

15

20

25

30

35

40

45

50

55

60

65

4

memory controller hub (NB/MCH) 202 and south bridge and
input/output (1/O) controller hub (SB/ICH) 204. Processing
unit 206, main memory 208, and graphics processor 210 are
connected to NB/MCH 202. Graphics processor 210 may be
connected to NB/MCH 202 through an accelerated graphics
port (AGP).

Inthe depicted example, local area network (LAN) adapter
212 connects to SB/ICH 204. Audio adapter 216, keyboard
and mouse adapter 220, modem 222, read only memory
(ROM) 224, hard disk drive (HDD) 226, CD-ROM drive 230,
universal serial bus (USB) ports and other communication
ports 232, and PCI/PCle devices 234 connect to SB/ICH 204
through bus 238 and bus 240. PCI/PCle devices may include,
for example, Ethernet adapters, add-in cards, and PC cards for
notebook computers. PCI uses a card bus controller, while
PCle does not. ROM 224 may be, for example, a flash basic
input/output system (BIOS).

HDD 226 and CD-ROM drive 230 connect to SB/ICH 204
through bus 240. HDD 226 and CD-ROM drive 230 may use,
for example, an integrated drive electronics (IDE) or serial
advanced technology attachment (SATA) interface. Super [/O
(SI10) device 236 may be connected to SB/ICH 204.

An operating system runs on processing unit 206. The
operating system coordinates and provides control of various
components within the data processing system 200 in FIG. 2.
As a client, the operating system may be a commercially
available operating system such as Microsoft Windows 7
(Microsoft and Windows are trademarks of Microsoft Corpo-
ration in the United States, other countries, or both). An
object-oriented programming system, such as the Java pro-
gramming system, may run in conjunction with the operating
system and provides calls to the operating system from Java
programs or applications executing on data processing sys-
tem 200 (Java is a trademark of Oracle and/or its affiliates.).

As a server, data processing system 200 may be, for
example, an IBM® eServer™ System p® computer system,
running the Advanced Interactive Executive (AIX®) operat-
ing system or the LINUX operating system (IBM, eServer,
System p, and AIX are trademarks of International Business
Machines Corporation in the United States, other countries,
or both, and LINUX is a registered trademark of Linus Tor-
valds in the United States, other countries, or both). Data
processing system 200 may be a symmetric multiprocessor
(SMP) system including a plurality of processors in process-
ing unit 206. Alternatively, a single processor system may be
employed.

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as HDD 226, and may be
loaded into main memory 208 for execution by processing
unit 206. The processes for illustrative embodiments of the
present invention may be performed by processing unit 206
using computer usable program code, which may be located
in a memory such as, for example, main memory 208, ROM
224, or in one or more peripheral devices 226 and 230, for
example.

A bus system, such as bus 238 or bus 240 as shown in FIG.
2, may be comprised of one or more buses. Of course, the bus
system may be implemented using any type of communica-
tion fabric or architecture that provides for a transfer of data
between different components or devices attached to the fab-
ric or architecture. A communication unit, such as modem
222 or network adapter 212 of FIG. 2, may include one or
more devices used to transmit and receive data. A memory
may be, for example, main memory 208, ROM 224, or acache
such as found in NB/MCH 202 in FIG. 2.

US 9,152,567 B2

5

Those of ordinary skill in the art will appreciate that the
hardware in FIGS. 1 and 2 may vary depending on the imple-
mentation. Other internal hardware or peripheral devices,
such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used in addition to or
in place of the hardware depicted in FIGS. 1 and 2. Also, the
processes of the illustrative embodiments may be applied to a
multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the present invention.

Moreover, the data processing system 200 may take the
form of any of a number of different data processing systems
including client computing devices, server computing
devices, a tablet computer, laptop computer, telephone or
other communication device, a personal digital assistant
(PDA), or the like. In some illustrative examples, data pro-
cessing system 200 may be a portable computing device that
is configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-gener-
ated data, for example. Essentially, data processing system
200 may be any known or later developed data processing
system without architectural limitation.

The data processing systems depicted in FIGS. 1 and 2 may
employ various cache systems. For example, storage 108 may
employ a storage system or database system cache. Process-
ing unit(s) 206 may employ an L1 and/or [.2 cache. Disk 226
may use a cache. Software may manage hierarchical memory,
or tiering. The illustrative embodiments described herein
function within the context of a cache subsystem. The mecha-
nisms of the illustrative embodiments may work with any
caching system that stores records (cache entries) corre-
sponding to a physical or logical address of a storage device.
An example is a cache subsystem used in a block based or file
based storage system, such as disk 226.

As will be appreciated by one skilled in the art, the present
invention may be embodied as a system, method, or computer
program product. Accordingly, aspects of the present inven-
tion may take the form of an entirely hardware embodiment,
an entirely software embodiment (including firmware, resi-
dent software, micro-code, etc.) or an embodiment combin-
ing software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module” or “system.” Fur-
thermore, aspects of the present invention may take the form
of'a computer program product embodied in any one or more
computer readable medium(s) having computer usable pro-
gram code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, device, or any suitable combination of the
foregoing. More specific examples (a non-exhaustive list) of
the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store
a program for use by or in connection with an instruction
execution system, apparatus, or device.

10

20

35

40

45

6

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in a baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Computer code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, radio
frequency (RF), etc., or any suitable combination thereof.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java™,
Smalltalk™, C++, or the like, and conventional procedural
programming languages, such as the “C” programming lan-
guage or similar programming languages. The program code
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer, or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to the illustrative embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions that implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus, or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

FIG. 3 illustrates phases of cache prefetching based on
non-sequential lagging cache affinity in accordance with an
illustrative embodiment. Operation of cache prefetching

US 9,152,567 B2

7
begins (block 300). In phase 1 (block 301), the mechanism
creates a list containing records that are frequently accessed
and non-sequential in nature. Operation of creating a list of
frequently accessed and non-sequential records is described
in further detail below with reference to FIG. 2.

In phase 2 (block 302), the mechanism collects trailing
record statistics for each record in the frequently accessed
record list (FARL). In phase 3 (block 303), the mechanism
analyzes the trailing record statistics to find potential candi-
dates for prefetching. In phase 4 (block 304), the mechanism
creates and enables a prefetching policy. In phase 5 (block
305), the mechanism evaluates the effectiveness of the new
prefetching policy and strategies. Thereafter, operation ends
(block 306).

FIG. 4 is a flowchart illustrating operation of creating a list
of frequently accessed records in accordance with an illustra-
tive embodiment. Operation begins (block 400), and the
mechanism sets time equal to zero to start a polling period of
time T (block 401). During the polling period, all incoming
requests to the cache subsystem are monitored. The mecha-
nism waits for the next read request (block 402) and deter-
mines whether the read request results in a cache hit (block
403). If the read is not a cache hit, operation returns to block
402 to wait for the next read.

If the read request is a cache hit in block 403, the mecha-
nism determines whether the record is in the sequential record
black list (SRBL) (block 404). Those records found to be
sequential are added to the SRBL and not considered. Typi-
cally, this would be determined by keeping track of the last
one or more read requests and comparing them to the current
request to see if they are in sequential order by address.
Alternatively, a cache subsystem may have a simple
“prefetch” flag indicating how the record got into the cache.
Other techniques for determining sequential records may be
used depending on the implementation. If the record is in the
SRBL in block 404, operation returns to block 402 to wait for
the next read. Ifthe record is not in the SRBL in block 404, the
mechanism determines whether the record is sequential to the
previous record (block 405). If the record is sequential, the
mechanism updates the SRBL (block 406), and operation
returns to block 402 to wait for the next read. Sequential
records are added to the SRBL, because those records are
likely to be prefetched according to known sequential
prefetching techniques.

If'the record is not sequential in block 405, the mechanism
updates the access table (AT) (block 407). The AT is a two-
dimensional table in which each row contains a cache record
and the number of times it has been accessed during the
polling period. The mechanism adds a new row to the table
with a count of 1 (one) if the record is not already in the table.
Ifthe record is already in the table, the mechanism increments
the count value by 1 (one).

Thereafter, the mechanism determines whether the time is
greater than T (block 408). If the time is not greater than T,
operation returns to bock 402 to wait for the next read. If the
time is greater than T, meaning the polling period has expired,
the mechanism sorts the AT by counts (block 409). The
mechanism then populates the frequently accessed record list
(FARL) with the top N records of in the top N rows of the AT
(block 410), where N is a predetermined value. Thereafter,
operation ends (block 411).

Inphase 2, the mechanism collects trailing record statistics
for each record in the FARL. In this phase, the FARL is
referred to as “L.” which is a list of N records found from
phase 1.

10

15

20

25

30

35

40

45

50

55

60

65

8

LR}, R,, ..., Ry]«Frequently Accessed Records List

A lookup operation and a reference operation are defined
on the list. The lookup operation returns the numerical index
of'a record in the table given a record as an input. The refer-
ence operation returns a record from the list given a numerical
index. The following notation is used:

Index I=LOOKUP(L,R), where R is some record in
L<-lookup operation

Record R=L[I]=R,, where 1=<I=<N<-reference operation

The trailing records are stored in a trailing records table
(TRT), which is an array of sub-tables. That is, the TRT has a
sub-table (ST) for each record in L. The TRT is referenced in
the same way as L, having the same dimensions.

Sub-table ST=TRTJI], where 1=<I<N<-reference operation

FIG. 5 depicts an example of the format of a sub-table in
accordance with an illustrative embodiment. Each sub-table
has three columns. The first column contains an index of
access number. This also corresponds exactly to the row
number; therefore, in many implementations, the first column
is implicit. The second column contains the sequence of
records that follow the record represented by the sub-table for
the given access number in the first column. The sequence has
a minimum length of 0 (NULL) and a maximum length of M,
where M is a predetermined value. The third column contains
either a NULL value or the record in L that stopped tracking
for the record represented by the sub-table.

In the example depicted in FIG. 5, tracking for the first
entry stopped because the mechanism tracked M trailing
records; therefore, the third column contains NULL, indicat-
ing tracking did not stop because of encountering a particular
record. Tracking for the second entry stopped because the
tracking period was exceeded. The third column for the sec-
ond entry contains the entry in L that caused the mechanism
to stop tracking. In the depicted example, the third entry
contains a NULL in the second column with a record in L that
caused tracking to stop, meaning a frequently accessed record
was followed by another non-sequential frequently accessed
record.

Three operations are defined on the sub-tables in the TRT.
The first operation is to add an empty row, which adds a row
to the end of the table with the first column having a value
incremented by 1 (one) from the previous row, and the second
and third columns with NULL values. The second operation
is to add a record to the sequence of records in the second
column of the current row. The record is appended to the
sequence. The third operation is to add a record to the third
column in the case the record is also a record in L.

FIG. 6 is a flowchart illustrating operation of collecting
trailing record statistics in accordance with an illustrative
embodiment. The following abbreviations are used:

R=most recent record from the read request

CR=current record in L that is being tracked

TRACKING=Boolean representing whether or not any
record in L is currently being tracked

INDEX=numerical index of some record in L

Operation begins with initialing values (block 600), and
the mechanism begins a tracking time period by setting time
equal to zero (block 601). The initialization of values is as
follows:

INDEX=NULL

CR=NULL

TIME=0 (as in block 601)

The mechanism then waits for the next read (block 602).
With the next read, the mechanism determines whether track-
ing has been started (block 603). If tracking has not been
started for the record, the mechanism determines whether the
record being read R is in L. (block 604). If R is in L, the

US 9,152,567 B2

9

mechanism starts tracking (block 605). To start tracking, the
mechanism sets the following values:

TRACKING=TRUE

INDEX=LOOKUP(L, R)

CR=L[INDEX]

ST=TRT[INDEX]

The mechanism also adds an empty row to the sub-table
ST. Thereafter, or if R is not in L in block 604, the mechanism
determines whether time is greater than the tracking period T
(block 606). If time is not greater than the tracking period,
operation returns to block 602 to wait for the next read.

If tracking has been started for the record in block 603, the
mechanism determines whether R is in L (block 607). If R is
in [, the mechanism switches tracking to start tracking R
(block 608). Once tracking is started for CR, only three events
can stop the tracking. One event is that the time exceeds the
polling period (block 606: YES). Another event is that the
maximum number of trailing records M are added to the
second column of ST, in other words, the current row of ST is
full. Lastly, trailing stops for CR if one of the trailing records
itself is a record in L, in which case the mechanism stops
tracking CR and switches tracking to track R.

To switch tracking, the mechanism sets the following val-
ues:

Column 3 of ST=R

INDEX=LOOKUP(L, R)

CR=L[INDEX]

CR=R

ST=TRT[INDEX]

The mechanism also adds an empty row to ST. Thereafter,
the mechanism determines whether time is greater than the
tracking period T (block 606).

IfR is not in L in block 607, the mechanism appends R to
ST (block 609). The mechanism then determines whether the
row is full (block 610). If the row is full in block 610, the
mechanism stops tracking the current record (block 611). To
stop tracking, the mechanism sets the following values:

TRACKING=FALSE

INDEX=NULL

CR=NULL

Thereafter, or if the row is not full in block 610, the mecha-
nism determines whether time is greater than the tracking
period T (block 606). If the time is greater than the tracking
period T in block 606, operation ends (block 612). At the end
of the tracking period, the TRT is then analyzed in the next
phase.

In accordance with one embodiment, phase 2 can be
executed in one of two modes, referred to as “single record”
and “multiple records,” respectively. In single record mode,
M=1, and in multiple records mode, M is some finite natural
number greater than 1.

In phase 3, the mechanism analyzes the sub-tables in the
TRT in order to find potential candidates for prefetching. The
result is a prefetch table PT. FIG. 7 depicts an example of the
format of a prefetch table in accordance with an illustrative
embodiment. There are N rows in the PT, one for each record
in the FARL. There are two columns in each row. The first
column contains a record from the FARL, and the second
column contains a list of records that should be read into
cache each time the record in column one is accessed, assum-
ing the record is not already in cache. The second column may
also have an empty list NULL), meaning no suitable prefetch
candidate was found corresponding to the record in the first
column.

There are many ways to construct PT based on analysis of
TRT. In a first example implementation, the mechanism ana-
lyzes the third column for each record in TRT. If there exist

10

15

20

25

30

35

40

45

50

55

60

10

any records in the third column for a particular record’s
sub-table that occur with a frequency greater than some
threshold, expressed as a percentage of total accesses, then
the mechanism adds those records to the row in PT corre-
sponding to the record in question. This initiates prefetch of
the next frequently accessed record, which will result in
prefetching trailing records for the next frequently accessed
record.

In a second example implementation, the mechanism ana-
lyzes the second column for each record in the TRT. If there
exist any records in the second column for a particular
record’s sub-table that occur with a frequency greater than
some predetermined threshold, expressed as a percentage of
total accesses, then the mechanism adds those records to the
row in PT corresponding to the record in question.

Both implementations above can be applied in either single
record mode or multiple records mode. In single record mode,
the PT can be thought of as a list of tuples of size 2, where the
first entry in the tuple is the reference record, and the second
entity is NULL or the record to be prefetched when the
reference record is read. In the multiple records case, the PT
can be thought of as a list of tuples of size M+1, where M
refers to the maximum number of trailing records following a
reference record from phase 2. The first entry of the tuple is
the reference record, and what follows is wither NULL or a
list of records to be prefetched once the reference record is
read.

In phase 4, a prefetching policy is created and enabled for
all rows in TRT that do not have NULL in the second column.
Optionally, the SRBL from the first phase can be amended
with the records in TRT, which yielded no prefetch candi-
dates.

Inphase 5, the prefetching policy is allowed to continue for
an extended period of time. During this time other processes
may analyze the overall performance of the cache subsystem
to evaluate if the new policy has improved caching efficiency.
At the end of the period, the cache subsystem may clear the
SRBL or keep the SRBL in place before the whole process
starts again.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

Thus, the illustrative embodiments provide a mechanism
for cache prefetching based on non-sequential lagging cache
affinity. The cache subsystem determines frequently accessed
non-sequential cache records. The cache subsystem collects
trailing record statistics and analyzes the trailing record sta-
tistics. The cache subsystem then decides and applies new
caching strategies. The cache subsystem may then evaluate
the effectiveness of the new strategies.

US 9,152,567 B2

11

As noted above, it should be appreciated that the illustra-
tive embodiments may take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In one
example embodiment, the mechanisms of the illustrative
embodiments are implemented in software or program code,
which includes but is not limited to firmware, resident soft-
ware, microcode, etc.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems and Ethernet cards are just a few of the cur-
rently available types of network adapters.

The description of the present invention has been presented
for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What is claimed is:

1. An apparatus, comprising:

a processor; and

a memory coupled to the processor, wherein the memory
comprises instructions which, when executed by the
processor, cause the processor to:

determine frequently accessed non-sequential cache
records in a cache subsystem;

collect trailing record statistics for the frequently accessed
non-sequential cache records;

generate a prefetch table comprising a set of cache records
to be prefetched in association with each frequently
accessed non-sequential cache record; and

initiate prefetching such that the cache subsystem
prefetches a set of trailing records responsive to a read of
a given frequently accessed non-sequential cache record
according to the prefetch table.

2. The apparatus of claim 1, wherein determining fre-

quently accessed non-sequential cache records comprises:

for each given read operation in a polling time period,
responsive to the given read operation resulting in a
cache hit and an address of the given read operation
being non-sequential with respect to an address of a
previous read operation, updating a count value of a
cache record of the given read operation in an access
table;

responsive to expiration of the polling time period, sorting
the access table by count value; and

populating a frequently accessed record list with predeter-
mined number of records from the access table.

30

35

40

45

50

55

12

3. The apparatus of claim 2, wherein determining fre-
quently accessed non-sequential cache records further com-
prises:

responsive to an address of the given read operation being

sequential with respect to an address of the previous read
operation, adding a cache record of the given read opera-
tion to a sequential record block list.
4. The apparatus of claim 1, wherein collecting trailing
record statistics for the frequently accessed non-sequential
cache records comprises:
responsive to a given cache record being a frequently
accessed non-sequential record, starting tracking of sub-
sequent cache records for the given cache record; and

for each subsequent cache record that is not a frequently
accessed non-sequential record, recording the subse-
quent cache record in association with the given cache
record.

5. The apparatus of claim 4, wherein collecting trailing
record statistics for the frequently accessed non-sequential
cache records comprises creating a trailing records table hav-
ing a sub-table for each frequently accessed non-sequential
cache record;

wherein starting tracking of subsequent cache records

comprises creating a row in a sub-table of the given
cache record in the trailing records table; and

wherein recording the subsequent cache record in associa-

tion with the given cache record comprises adding the
subsequent cache record to the row in the sub-table of
the given cache record.

6. The apparatus of claim 5, wherein collecting trailing
record statistics for the frequently accessed non-sequential
cache records further comprises stopping tracking of subse-
quent cache records for the given cache record responsive to
anumber of subsequent cache records added to the row in the
sub-table of the given cache record reaching a predetermined
threshold.

7. The apparatus of claim 6, wherein the predetermined
threshold is one.

8. The apparatus of claim 5, wherein the set of cache
records to be prefetched in association with a given frequently
accessed non-sequential cache record comprises cache
records in the row in the sub-table of the given frequently
accessed non-sequential cache record that occur with a fre-
quency greater than a predetermined threshold.

9. The apparatus of claim 5, wherein collecting trailing
record statistics for the frequently accessed non-sequential
cache records further comprises:

responsive to a given subsequent cache record being a

frequently accessed non-sequential record, recording
the given subsequent cache record to the row in the
sub-table of the given cache record, stopping tracking of
subsequent cache records for the given cache record, and
switching tracking to the given subsequent cache record.

10. The apparatus of claim 4, wherein collecting trailing
record statistics for the frequently accessed non-sequential
cache records further comprises:

responsive to expiration of the tracking period, stopping

tracking of subsequent cache records for the given cache
record.

11. A method, in a data processing system, for cache
prefetching based on non-sequential access, the method com-
prising:

determining frequently accessed non-sequential cache

records in a cache subsystem;

collecting trailing record statistics for the frequently

accessed non-sequential cache records;

US 9,152,567 B2

13

generating a prefetch table comprising a set of cache
records to be prefetched in association with each fre-
quently accessed non-sequential cache record; and

initiating prefetching such that the cache subsystem
prefetches a set of trailing records responsive to a read of
a given frequently accessed non-sequential cache record
according to the prefetch table.

12. The method of claim 11, wherein determining fre-
quently accessed non-sequential cache records comprises:

for each given read operation in a polling time period,

responsive to the given read operation resulting in a
cache hit and an address of the given read operation
being non-sequential with respect to an address of a
previous read operation, updating a count value of a
cache record of the given read operation in an access
table;

responsive to expiration of the polling time period, sorting

the access table by count value; and

populating a frequently accessed record list with predeter-

mined number of records from the access table.

13. The method of claim 12, wherein determining fre-
quently accessed non-sequential cache records further com-
prises:

responsive to an address of the given read operation being

sequential with respect to an address of the previous read
operation, adding a cache record of the given read opera-
tion to a sequential record block list.
14. The method of claim 11, wherein collecting trailing
record statistics for the frequently accessed non-sequential
cache records comprises:
responsive to a given cache record being a frequently
accessed non-sequential record, starting tracking of sub-
sequent cache records for the given cache record; and

for each subsequent cache record that is not a frequently
accessed non-sequential record, recording the subse-
quent cache record in association with the given cache
record.

15. The method of claim 14, wherein collecting trailing
record statistics for the frequently accessed non-sequential

—_
w

20

25

35

14

cache records comprises creating a trailing records table hav-
ing a sub-table for each frequently accessed non-sequential
cache record;

wherein starting tracking of subsequent cache records

comprises creating a row in a sub-table of the given
cache record in the trailing records table; and

wherein recording the subsequent cache record in associa-

tion with the given cache record comprises adding the
subsequent cache record to the row in the sub-table of
the given cache record.

16. The method of claim 15, wherein collecting trailing
record statistics for the frequently accessed non-sequential
cache records further comprises stopping tracking of subse-
quent cache records for the given cache record responsive to
anumber of subsequent cache records added to the row in the
sub-table of the given cache record reaching a predetermined
threshold.

17. The method of claim 16, wherein the predetermined
threshold is one.

18. The method of claim 15, wherein the set of cache
records to be prefetched in association with a given frequently
accessed non-sequential cache record comprises cache
records in the row in the sub-table of the given frequently
accessed non-sequential cache record that occur with a fre-
quency greater than a predetermined threshold.

19. The method of claim 15, wherein collecting trailing
record statistics for the frequently accessed non-sequential
cache records further comprises:

responsive to a given subsequent cache record being a

frequently accessed non-sequential record, recording
the given subsequent cache record to the row in the
sub-table of the given cache record, stopping tracking of
subsequent cache records for the given cache record, and
switching tracking to the given subsequent cache record.

20. The method of claim 14, wherein collecting trailing
record statistics for the frequently accessed non-sequential
cache records further comprises:

responsive to expiration of the tracking period, stopping

tracking of subsequent cache records for the given cache
record.

